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Abstract:

The variation of wear rate with nominal contact pressure during sliding wear tests in ball-

on-flat geometry for two sliding systems was analyzed.  Using interrupted wear test data a

functional relationship is established between the “instantaneous” wear rate and the nominal

contact pressure for M-10 steel (data from literature) and TZP-ZrO2 materials.  The wear rates

and the contact pressures were connected by simple wear models that exhibited a variation in wear

mechanism.  The results show how it is possible to use a simple curve-fitting program to examine

the plausibility of various wear models.  In M-10 steel, the transition in wear fits very well to a

frictional heating model that produces surface softening.  In ZrO2, stress-induced tetragonal to

monoclinic phase transformation is a candidate for the wear mechanism transition.

Introduction

When two surfaces are in loaded sliding contact, stresses are imposed on both solids as a

result of normal and tangential forces that arise from sliding.  Frictional heat is also generated at
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the sliding-contact interface.  The imposed stresses and frictional heating at the contact interface

are the key driving forces for the occurrence of wear at a sliding-contact interface.  Consequently,

the wear rates and wear mechanisms are determined in large part by the magnitude of these

driving forces.

The forces and temperature rise are determined by the contact pressure, the sliding speed,

and the friction coefficient.  In many wear tests, the friction coefficient is continuously measured,

while the sliding speed and the load are held constant.  However, simple benchtop wear tests are

often conducted with a nonconformal-contact configuration, such as ball-on-flat, cylinder-on-flat,

or cylinder-on-cylinder [1] due to their ease of alignment of test specimens and the elimination of

edge loading at the contact during testing.

If one assumes an elastic contact, the initial contact pressure can be calculated using

Hertzian theory.  In many reports, only this initial Hertzian contact pressure may be specified, but

during the test, the nominal contact pressure drops very rapidly.  In a point-contact geometry,

several orders of magnitude decrease in the contact pressure can occur during wear.  Such a drop

in pressure will produce large variations in contact stress and frictional heating, producing

changes in the wear mechanisms, and variation in the wear rate.

A common practice is to report an overall wear rate, which is less than the full amount of

information potentially obtainable during the course of a test.  If the wear scar dimension as a

function of time is measured, both the nominal contact pressure and the wear rates can be

calculated as a function of time (or distance).  A relationship can then be established between the

nominal contact pressure and the wear rate.  Such an analysis provides a connection between the

wear rate and the driving force for wear, and can help elucidate the mechanisms of wear.  The

ability to assess the variation of wear rates and wear mechanisms during the course of a single test

can help discern trends when conducting multiple tests at differing loads to evaluate the effect of

contact stress on wear, e.g., Ref.  2.

Except in the catastrophic case of scuffing, wear generally occurs at the contacting

surfaces.  The analysis presented in this paper attempts to correlate measured macroscopic wear



rates with macroscopic-level nominal contact pressure.  The main objective of this paper is to

assess, for two very different sliding systems, the variation of contact pressure as well as the wear

rates in the nonconformal-contact wear tests.  Variation in wear rates may indicate the presence or

absence of wear transitions.

Average Wear Rate and Instantaneous Wear Rate

When wear data are reported, the overall "wear rate" R during sliding is often calculated

by dividing the total measured wear volume VT at the end of test by the total sliding distance (or

time duration) of the test XT, i.e., 
  R = VΤ

XT .  This approach assumes that wear rates are constant

and wear mechanisms are unchanging during the course of the test, and that the average wear rate

is characteristic of the entire test.

If one develops simple physically intuitive expressions for wear rate, in which wear rate is

expressed in terms of test parameters (e.g., speed, temperature, load) then a comparison with

measured data requires either the model be integrated and fitted to a graph of V vs. P, or the

expression be fit to 
 dV

dx vs. P.  Often the latter is the desired approach because integration is

difficult.

For wear tests with interrupted measurements, such as those by Mecklenburg [3], the

instantaneous wear rate can be approximated by measuring the amount of wear that occurs

between intervals n and n+1, divided by the sliding distance (or time for constant speed) over

which it occurs 

  dV
dx n

≈ ∆V
∆x

= Vn + 1 –Vn
xn + 1 –xn .  The instantaneous wear rate may vary during the course

of the test.

This paper focuses on the ball-on-disk geometry, which is often used because of its

sensitivity and ease of detecting even small amounts of wear.  When a ball, or hemispherical cap,

slides against a flat, a circular wear scar is produced on the ball.  The volume V of the material

worn from the ball is 
  V = πr4

4 Rb , where r is the wear scar radius on the ball, and Rb is the radius

of the ball.  The macroscopic contact pressure is L/A, where L is the load in force units, and A is

the area of the wear scar.  When the test is first started, no wear scar is present, and the initial



contact pressure is L/Ah, where Ah is the contact area calculated using Hertzian theory.  The

moment that wear occurs, a scar forms, and the pressure plummets rapidly, often by orders of

magnitude.

Effective Pressure

Within any interval, the higher instantaneous wear rate can occur nearer to Pi or to Pf,

depending on the sliding system.  In fact, the M-10 and PSZ systems were specifically used

because they have exactly opposite behavior in this respect.  If the intervals are sufficiently small,

then the differences between Pi and Pf need not be great.

It is not immediately obvious what the time-average effective pressure, Peff, is within the

interval as the scar forms and the pressure decreases.  Peff could simply be the average of Pi and

Pf, which would hold true for some contact geometries.  For a ball-on-flat geometry, the volume

is proportional to the scar diameter raised to the fourth power, and a greater amount of time is

spent within the interval when the pressure in the contact is nearer to Pf than to Pi (assuming

reasonably small intervals).  This is because wear that occurs at the beginning of an interval

causes the scar to increase very rapidly and the pressure to quickly drop, with the decrease

lessening due to the square root dependence of pressure on worn volume,

If the instantaneous wear rate 
 dV

dx does not vary too quickly as a function of pressure

within an interval, one can make at least a reasonable choice for Peff.  

 
Peff = 1

(xf – xi)
P(x) dx

x i

x f

,

If the interval is small then the wear rate is reasonably constant and can be approximated as a

constant S to get  V = S x .  So 
  P = L

S x 4πRb  and 

  
Peff = 1

(xf – xi)
L dx

S x 4πRbx i

x f

.  This gives
  Peff = 1

xf + xi

2 L
S 4πRb  .  Substituting 

  x = L
P S 4πRb , one finds that 

 Peff =
2 Pi Pf
Pi + Pf .  For

example, if Pi = 20 and Pf = 10, Peff = 13.3.  For other contact geometries (e.g., cylinder on flat)

the expression would be different.



Analysis of M-10 Steel Wear

As a starting point, some ball-on-flat data from the literature were used in which a flat disk

was slid against a spherical ball with constant load and speed [3].  The tests were conducted with

3.18-mm (1/8 in.)-diameter balls and 101.6-mm-diameter, 25.4-mm-thick discs, all made from

hardened (52 Rc) M-10 steel.  The surface roughness was ~ 1.0 µm Ra after burnishing with a thin

coating of (CFx)n.  The sliding speed was held constant at 1.57 m s-1 and normal load of 2.2 N.

To determine the change in wear scar diameter with time, the test was interrupted after 1, 2, 5, 10,

20, 30, 45, and 60 sec; and 2, 5, 10, 30, 60, 120, and 150 minutes to measure the wear scar

diameter.

The data [3] were analyzed to determine dV/dt as a function of Peff by calculating

differences in accumulated wear volume, and plotting them against Peff.  Figure 1 shows this plot

for the M-10 tool steel that was used.  In all cases the ball is the wearing specimen.

Clearly, the wear rate varies as a function of pressure.  The pressure is high at the start of

the test (right side of abscissa), and decreases as wear occurs (left side of abscissa).  In order to

better understand the behavior, a mathematical relationship between the measured wear rate and

the contact pressure was established.  Simple curve fitting to of analytical expression to the data

was used to examine the goodness of fit.

At low pressures, the wear rate is approximately constant.  At higher contact pressures, the

wear rate increases by approximately an order of magnitude.  The high pressure exists only at the

start of the test, and the pressure decreases very rapidly during the few seconds of sliding.  The

relationship between the wear rate and contact pressure that are chosen must effectively reflect

this trend.

When engineering surfaces are brought into sliding contact, asperities will make

momentary contact as they slide past each other.  Because the real area of contact between

asperities is very small when compared with the nominal contact area, a very simple picture

would predict the wear rate to be independent of pressure for constant load, because the overall

number of contacting asperities does not change, only the distance between them.  In addition, for



a wide variety of sliding materials, wear rate is inversely proportional to the hardness of the

materials, consistent with a simple picture of asperity shearing.

For this data, one can associate the variation in wear rate with a decrease in hardness, due

either to mechanical or thermal stress.  Because metals tend to work harden instead of work

soften, and the sliding rate is rather high (1.57 m/s) one approach is to associate the increase in

wear rate with thermal softening caused by sliding.  It will be examined whether this is at all

reasonable.

It has been shown that the temperature rise of the surface of a sliding contact is

proportional to the nominal contact pressure [4].  The temperature can be expressed as T = Ta +

cP, where Ta is the ambient temperature (300K), and c is a constant that depends  on the thermal

diffusivity, the sliding speed, the asperity size, and the friction coefficient which we are forced to

assume is constant.  If friction data were available then that data could be folded in as well.

The hardness of M-10 steel is known to be relatively constant at low and medium

temperatures, with softening occurring at high temperatures [5].  This behavior conveniently

expressed in the form 

 
H(T) = Ho 1 +exp b

Ts
– b

T

– 1

(modified Fermi function) where T is the

contact temperature, Ts is the softening temperature at which the hardness drops to 0.5 of the

original value (we take this to be 1000 K from handbooks), and b is a constant that controls the

abruptness of the drop.  Clearly, this is only approximate, and other functions that exhibit similar

behavior could be used.  Because it is assumed that the wear rate dV/dx is inversely proportional

to the hardness in this simple model, 

 
dV/dx = k 1 +exp b

1000K – b
T

, where k is an overall

constant.  From inspection of Fig. 1, it is found that k is 3.4 x 10-16 m3/s, and if T = 300K + cP is

substituted,  is possible to fit the resulting expression to the data in Fig. 1 (solid line) with a

computer curve-fitting program.  (The data from Mecklenburg were specifically reported as a

function of time, not distance, and thus the graph is in terms of time. This does not affect the

results.)  If one does this, the values of c and b are found to be 1.68x10-3 m2K/N and 3724 K,

respectively.  These numbers can in turn be substituted into the hardness equation to also give Fig.



2, which exhibits the general shape of tool steel hardness.  The effect of temperature rise is by not

limited to reduction of hardness; other tribological processes that are temperature dependent, for

instance oxidation rate will also be affected, and could be modeled similarly.  Lim and Ashby

attempted to summarize the impact of frictional heating in the construction of their wear

mechanism maps [4].  Regardless of the precise mechanism, it is clear that the wear mechanism

must involve a process that shows a rapid transition to produce a large change in wear rate.

Analysis of ZrO2 Wear

There are instances in which the wear rate may decrease instead of increase with larger

contact pressure.  An example is the wear of yttria- stabilized TZP (tetragonal zirconia

polycrystalline).  An interrupted pin-on-flat test in reciprocating contact was conducted with a

ZrO2 pin rubbing against a ZrO2 flat.  The hemispherical radius of curvature of the pin was 127

mm.  Tests were conducted at a 10 N load and sliding speed of 0.05 m/s.  The instantaneous wear

rates and Peff were calculated as a function of sliding distance as before (Fig. 3).

Here the wear rate is substantially lower at higher pressures.  This behavior has been

associated with the stress- and temperature- induced tetragonal-to-monoclinic phase

transformation that occurs in the ZrO2 material [6].  Because of the slow sliding speed (0.05 m/s)

it is thought that heating is minimal.  The phase transformation is martensitic and occurs

suddenly, and is accompanied by an ~ 5% volume increase that leads to compressive residual

stress and toughening.

One can change the expression slightly to incorporate stress-induced toughening as the

dominant factor affecting wear rate.  A semianalytical treatment [7] found that the wear resistance

is proportional to the inverse square root of the fracture toughness, or 

  dV
dx

∝ 1
K .  The toughness

is low at low pressures and increases abruptly when a martensitic toughening transformation

occurs.  A simple function for toughness that exhibits a sudden transition is the modified Fermi

function, this time cast in the form 

 
K = K o+K1 / 1 + exp c

P – c
P0.5

 where a number of constants



are unavoidably present, and P0.5 is the pressure at which the toughness is one-half maximum.  If

the expression for K is substituted into 
 dV

dx , above,  one obtains
 dV

dx
= 1/ K o+K1 / 1 +exp c

P – c
P0.5

.

The solid line in Fig 3 shows the curve fit of the data to this expression.  These numbers

can in turn be substituted into the toughness equation to also give Fig. 4 where the best-fit value

of P0.5 is ~ 1.8 x 107 Pa.

Summary

Although the nonconformal-contact configuration is desirable for wear tests, the usual

practice of reporting average wear rate over the duration of such tests can be misleading.  These

tests have shown that contact pressure and wear rate can vary by orders of magnitude during tests

of common materials.  A single average wear rate and a single wear mechanism cannot reflect

such variations, and a better understanding of the wear test results can be developed by doing

interrupted tests and examining the results in light of plausible simple models.  Curve fitting

programs that do not require programming can be useful tools to examine models give physically

reasonable fits to the measured data.  Here, the form of the functions were typical of processes

that involve a sudden transition with pressure or temperature.  Such an approach would need to be

combined with surface characterization techniques to give any confidence as to the accuracy of

such models.

Certainly more test results that measure the variation of wear scar as a function of time are

desirable.  Because the current analysis is semiempirical, more data analysis is required to ensure

general applicability of the results.
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